skip to main content


Search for: All records

Creators/Authors contains: "Xu, Anqin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication. 
    more » « less
  2. Abstract

    The development of novel doping strategies compatible with high‐resolution patterning and low cost, large‐scale manufacturing is critical to the future development of electronic devices. Here, an approach to achieve nanoscale site‐specific doping of Si wafer using DNA as both the template and the dopant carrier is reported. Upon thermal treatment, the phosphorous atoms in the DNA diffuse into Si wafer, resulting in doping within the region right around the DNA template. A doping length of 30 nm is achieved for 10 s of thermal treatment at 1000 °C. Prototype field effect transistors are fabricated using the DNA‐doped Si substrate; the device characteristics confirmed that the Si is n‐doped. It is also shown that this approach can be extended to achieve both n‐type and p‐type site‐specific doping of Si by using DNA nanostructures to pattern self‐assembled monolayers. This work shows that the DNA template is a dual‐use template that can both pattern Si and deliver dopants.

     
    more » « less